
Devils in BatchNorm
Yuxin Wu

Facebook AI Research

http://ppwwyyxx.com



Batch Normalization – a Milestone



Batch Normalization – a Necessary Evil

• “Batch normalization in the mind of many people, including me, is a 
necessary evil. In the sense that nobody likes it, but it kind of works, 
so everybody uses it, but everybody is trying to replace it with 
something else because everybody hates it” – Yann Lecun

• “A very common source of bugs” – CS231n 2019 Lecture7

Computer Vision News 11/2018, Page 9. https://www.rsipvision.com/ComputerVisionNews-2018November/Computer%20Vision%20News.pdf
CS231n 2019 Lecture 7, Page 74. http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture07.pdf

https://www.rsipvision.com/ComputerVisionNews-2018November/Computer%20Vision%20News.pdf


H
, W

C N

H
, W

What’s Batch Norm

(batch)(channel)

Ioffe, Sergey, and Christian Szegedy. "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift." ICML 2015.



H
, W

C N

H
, W

What’s Batch Norm: Training Time

• Batch …

• Normalization!

!𝑥 = $ %&'
('

• And more …
• Channel-wise affine (won’t discuss)
• Train/test inconsistency

H
, W

C N

Batch Norm

𝜇, 𝜎

Ioffe, Sergey, and Christian Szegedy. "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift." ICML 2015.



H
, W

C N

H
, W

What’s Batch Norm

• 𝜇,, 𝜎,- = mean, var(𝑥, axis=[𝑁,𝐻,𝑊])
• Training time:
• !𝑥 = $ %&'

('
• 𝜇>?@ ← 𝜆𝜇>?@ + 1 − 𝜆 𝜇,
• 𝜎>?@- ← ⋯

• Test time:
• No concept of “batch”
• !𝑥 = $ %&GHI

(GHI

H
, W

C N

Batch Norm

𝜇, 𝜎

Ioffe, Sergey, and Christian Szegedy. "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift." ICML 2015.



BatchNorm’s Effect: Optimization

• Faster/Better Convergence

• Insensitive to initialization

• Stable Training (enable various networks to be trained)



BatchNorm’s Effect: Optimization

• Faster/Better Convergence

• Insensitive to initialization

• Stable Training (enable various networks to be trained)



What’s special about BatchNorm?

• Training: !𝑥 = $ %&'
('

Testing: !𝑥 = $ %&GHI
(GHI

• Why inconsistency works?

• Think about Dropout, or data augmentation

• 𝜇>?@, 𝜎>?@ approximate E[𝜇,], E[𝜎,]

• 𝜇,, 𝜎, are (slightly) noisy versions of the EMA

Inconsistency!



Why inconsistency works?

𝜇>?@, 𝜎>?@ approximate E[𝜇,], E[𝜎,]
𝜇,, 𝜎, are (slightly) noisy versions of the EMA

When 𝜇>?@, 𝜎>?@ does not approximate 𝜇,, 𝜎,
1. When EMA are not computed properly
2. When 𝜇,, 𝜎, are not stable -- cannot be approximated well

a) Unstable data
b) Unstable model

When does BatchNorm fail?



Devils in testing:
EMA update



EMA update: devils in testing

• 𝜇>?@ ← 𝜆 𝜇>?@ + 1 − 𝜆 𝜇,, 𝜎>?@- ← ⋯
• What makes EMA a bad approximation of E[𝜇,], E[𝜎,] ?
• Small 𝜆, EMA biased. typical 𝜆 = 0.9~0.99
• Large 𝜆 , insufficient iterations (𝜆=0.99, N>1000)
• Unstable model or data in last N iterations

• Typical error: “false overfitting” when EMA is bad



Say Goodbye to EMA

• EMA is:
• Always biased
• Always estimated on non-stationary data
• Just a cheap version of “true average”

• We need True Average!

Precise BatchNorm



Precise BatchNorm

• Stop training, compute true E[𝜇,], E[𝜎,] with N iterations
• Small overhead
• Used in ResNet – but never became popular:
• 𝜆 large enough
• Trained long enough
• Model is stable: converged well enough in the end

• However …



Example 1: when you need Precise BatchNorm

Fig 4, ImageNet in 1 hour
Priya et. al., Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour



Example 1: when you need Precise BatchNorm

Fig 4, ImageNet in 1 hour
train & val err of large batch training

Priya et. al., Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
Yuxin Wu and Kaiming He. ”Group Normalization“ IJCV

Fig 9, Group Normalization
(IJCV version)

val err of large batch training

regular BN Precise BN



Example 2: when you need Precise BatchNorm

Reinforcement Learning
Yuandong Tian, Building Scalable Framework and Environment of Reinforcement Learning, https://yuandong-tian.com/deeplearning_summit.pdf

https://yuandong-tian.com/deeplearning_summit.pdf


Example 2: when you need Precise BatchNorm

Reinforcement Learning: AlphaGo Zero

Yuandong Tian, Building Scalable Framework and Environment of Reinforcement Learning, https://yuandong-tian.com/deeplearning_summit.pdf

https://yuandong-tian.com/deeplearning_summit.pdf


Example 2: when you need Precise BatchNorm

“Moment Staleness” in ELF OpenGO

Yuandong Tian, et. al., ELF OpenGo: An Analysis and Open Reimplementation of AlphaZero, ICML2019



When you need Precise BatchNorm?

• When you need to inference, and EMA is unstable, because:
• Model did not stay stable for sufficient iterations

• Implementation:
• Cheap Precise BN: just update EMA using:
• high 𝜆
• a fixed model

• Many variants are OK



Devils in training:
batch size



“Normalization batch size”

• Normalization batch != SGD batch
• Historical implementation: per-GPU BN
• Cannot easily tune: speed vs. memory

• Today: Sync BN, Ghost BN, Virtual BN

• ImageNet in 1 hour setup:
• Change “SGD batch size” & LR
• Keep “normalization batch size” at 32

Priya et. al., Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour



Devils in training: normalization batch size

• Training: !𝑥 = $ %&'
('

Testing: !𝑥 = $ %&U
(U

• 𝜇,, 𝜎,: have noise from other samples in a batch
• noise: sth you can never fit

• Small NBS -> large noise; large NBS -> small noise

Noise is Regularization!
Need Proper Regularization



Tuning the “normalization batch size”

• NBS controls regularization strength
• Small NBS -> large noise -> poor optimization
• Large NBS -> small noise -> overfitting

Norm BS 2 4 8 16 32 64 128 1024
train err 30 28 26 24 22 21 20 18
val err 35 27 25 23.7 23.6 23.6 23.7 23.9

ResNet-50 on ImageNet

(assume i.i.d. data)



Implementations: Sync BatchNorm/Cross-GPU BN

• To increase NBS, compute 𝜇,, 𝜎, of a larger batch across GPUs
• Implemented by all-reduce 2×𝐶 elements: 𝐸 𝑥 , 𝐸[𝑥-]
• Slight time/memory overhead.

• Available in Tensorpack/PyTorch/MXNet; easy to implement in TF

Chao Peng, et. al., MegDet: A Large Mini-Batch Object Detector



Implementations: Ghost BatchNorm

• To decrease NBS, just split large batch to small ones for normalization.

• Available in TF/tensorpack (virtual_batch_size=)
• Easy to implement in any library

Elad Hoffer, et. al., Train longer, generalize better: closing the generalization gap in large batch training of neural networks



Implementations: Virtual BatchNorm

• To increase NBS, use more images to run forward-only
• Slight memory overhead; Large time overhead
• More controllable
• Not popular

Tim Salimans, et. al., Improved Techniques for Training GANs



Implementations: Accumulate Gradients

• To keep NBS, while changing SGD batch size
• Save gradients, and update the model once a while instead

• Available in tensorpack; easy to implement in PyTorch/TF/MXNet



Related: Batch Renormalization

• Training: !𝑥 = $ %&'
('

× stop_gradient(𝑟) + stop_gradient(𝑑)

Testing: !𝑥 = $ %&GHI
(GHI

• 𝑟, 𝑑 pushes 𝜇,, 𝜎, similar to 𝜇>?@, 𝜎>?@
• Reduce noise & inconsistency

• Need to tune the limit on 𝑟, 𝑑

Sergey Ioffe, et. al., Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-Normalized Models



Devils in training / fine-tuning:
data distribution



Devils in training / fine-tuning: data distribution

• Non-i.i.d. data:
• NBS = 32 = 16 labels x 2 samples

• hurt SGD as well

Sergey Ioffe, et. al., Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-Normalized Models

Batch Renorm, Fig 3

(Ghost BN)



When is data distribution non-i.i.d.?

1. When data comes from different sources
• multi-domain learning
• adversarial defense training
• fine-tuning

• Remediations:
• Training: “Separate BN” statistics for each domain
• Training/fine-tuning: Frozen BN -- 1~2 constant affine layers
• Testing: Adaptive BN – recompute precise statistics

Cihang Xie, et. al., Intriguing properties of adversarial training
Yanghao Li, et. al., Revisiting Batch Normalization For Practical Domain Adaptation



When is data distribution non-i.i.d.?

2. GAN: real/fake distribution
• D(real_batch, training=True) # D=Discriminator
• D(fake_batch, training=True, update_ema=False) # don’t update EMA
• D(fake_batch, training=False) # use EMA during training

3. When batch is designed to come from correlated sources
• two-stage object detector
• video understanding

4. Data depends on environment: RL
• target network, Precise BN



Devils in fine-tuning:
fusion



Fusion affects fine-tuning

• Pre-trained model sometimes contain fusion
• e.g. ImageNet models in Detectron
• Doesn’t hurt if frozen, but:

• Fused models may not be fine-tuned
• Reparameterization affects gradients
• 𝑓(𝑥) = 𝑤b× 𝑤-𝑥 + 𝑤c → 𝑓(𝑥) = 𝑤-e𝑥 + 𝑤ce

https://github.com/facebookresearch/maskrcnn-benchmark/issues/561

https://github.com/facebookresearch/maskrcnn-benchmark/issues/561


Devils in Implementations



PyTorch: momentum = 0.1

• 0.1 means 0.9
• 𝛾 initialized with U(0, 1)
• Legacy inherited from LuaTorch



cuDNN:

• Caffe2’s riv/running_inv_var is actually running variance
• 𝜖 ≥ 10%i; biased vs. unbiased variance -- might be relevant in conversion
• cuDNN 7: SPATIAL_PERSISTENT is inaccurate

• running_mean ← running_mean / scale_factor

Caffe:



TensorFlow: delayed EMA update

• Motivation: EMA update does not have to happen immediately
• Reality: no speedup
• Devils:
• Easy to forget
• One BN used multiple times
• BN inside tf.cond
• BN defined but not always used (many GAN implementations)

• Solution: update EMA in the layer



A Good TensorFlow Implementation
(tensorpack.models.BatchNorm)

It supports:
• Choose to use 𝜇,, 𝜎, or 𝜇>?@, 𝜎>?@, regardless of mode
• Choose whether to update EMA when using 𝜇,, 𝜎,
• Choose how to update EMA (in the layer or not)
• Tune “normalization batch size” with SyncBN / GhostBN



Summary: 10 ways to do BatchNorm
• Which 𝜇, 𝜎 ?
• 𝜇,,𝜎,; 𝜇>?@, 𝜎>?@; BRN

• How to compute 𝜇,, 𝜎,:
• Per-GPU BN; Sync BN; Ghost BN; Virtual BN

• Whether to update 𝜇>?@, 𝜎>?@ with 𝜇,, 𝜎,:
• YES; NO; Separate BN

• What to use for testing / fine-tuning:
• EMA; Precise BN; Adaptive BN; Frozen BN



Appendix:
Other Normalizations



H
,W

What’s Group Norm

NC

𝜇, 𝜎

!𝑥 = $ %&
(

Test time:
do the same thing

Yuxin Wu and Kaiming He. ”Group Normalization“ ECCV 2018



Layer Norm

all channels
in one group

Group Norm
H
,W

C N

Instance Norm

one channel
per group

one channel

Batch Norm

one image per batch

Ulyanov, Dmitry, Andrea Vedaldi, and Victor S. Lempitsky. “Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis.” CVPR 2017.
Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. "Layer normalization." arXiv preprint arXiv:1607.06450 (2016).



0 10 20 30 40 50 60 70 80 90 100
epochs

20

25

30

35

40

45

50

55

60

er
ro

r (
%

)

val error

Batch Norm (BN)
Layer Norm (LN)
Instance Norm (IN)
Group Norm (GN)

BN

LN
IN

GN

0 10 20 30 40 50 60 70 80 90 100
epochs

20

25

30

35

40

45

50

55

60

er
ro

r (
%

)

train error

Batch Norm (BN)
Layer Norm (LN)
Instance Norm (IN)
Group Norm (GN)

BN
LN

IN

GN

GroupNorm Fits Training Set Better
BatchNorm Has Regularization

Yuxin Wu and Kaiming He. ”Group Normalization“ ECCV 2018



0 10 20 30 40 50 60 70 80 90 100
epochs

20

25

30

35

40

45

50

55

60

Batch NormL Group NormJ
curves match

0 10 20 30 40 50 60 70 80 90 100
epochs

20

25

30

35

40

45

50

55

60

batch={32,16,8,4,2}×8

val error val error
Small Batch Size

NBS=2

NBS=32

Yuxin Wu and Kaiming He. ”Group Normalization“ ECCV 2018



R-CNN From Scratch: FrozenBN, SyncBN, GN

Kaiming He, et. al., ”Rethinking ImageNet Pre-training“ ICCV 2019



Other Normalizations

• L1 Normalization (L1BN, etc)
• Local Response Normalization (LRN)
• (Centered) Weight Normalization (WN, CWN, WS)
• No Normalization (Fixup)


