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Abstract— Reliable traffic light detection and classification
is crucial for automated driving in urban environments. Cur-
rently, there are no systems that can reliably perceive traffic
lights in real-time, without map-based information, and in
sufficient distances needed for smooth urban driving. We
propose a complete system consisting of a traffic light detector,
tracker, and classifier based on deep learning, stereo vision, and
vehicle odometry which perceives traffic lights in real-time.

Within the scope of this work, we present three major
contributions. The first is an accurately labeled traffic light
dataset of 5000 images for training and a video sequence of 8334
frames for evaluation. The dataset is published as the Bosch
Small Traffic Lights Dataset and uses our results as baseline. It
is currently the largest publicly available labeled traffic light
dataset and includes labels down to the size of only 1 pixel in
width.

The second contribution is a traffic light detector which runs
at 10 frames per second on 1280×720 images. When selecting
the confidence threshold that yields equal error rate, we are able
to detect traffic lights as small as 4 pixels in width. The third
contribution is a traffic light tracker which uses stereo vision
and vehicle odometry to compute the motion estimate of traffic
lights and a neural network to correct the aforementioned
motion estimate.

I. INTRODUCTION

Automated driving on highways is an actively researched

problem which has led to the emergence of many driver as-

sistance systems. Urban areas provide a new set of challenges

which require more sophisticated algorithms in multiple

areas ranging from perception over behavioral planning to

collision avoidance systems. One crucial part of perception

is the detection and classification of traffic signs and traffic

lights. Traffic lights present a challenging problem due to

their small size and high ambiguity with other objects present

in the urban environment, such as lamps, decorations, and

reflections.

Previous works on traffic light detection and classification

utilize spotlight detection and color thresholding [1]–[5],

template matching [1], [2], [6], or map information [7], [8].

All these systems make strong assumptions. Usually, they

require the traffic lights to be at least a certain size for the

algorithm to work [1], [2], on a distinctive background such

as suspended traffic lights in front of the sky [4], [9], or
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Fig. 1: Sample detections of small traffic lights in an image.

The top image is taken at the full resolution of 1280× 720.

At the bottom, the enlarged crop shows detected traffic lights

of size about 6×12 pixels. All lights are correctly classified

as yellow.

assume the existence of maps that contain prior knowledge

about the locations of all traffic lights in the environment.

With the recent advances and performance of deep neural

networks [10]–[13], significant improvements were made in

several fields of machine learning and especially computer

vision. Deep learning has been used for image classifi-

cation [10], end-to-end object detection [11], pixel-precise

object segmentation [13], and other applications. A neural

network approach that creates a probability map for 4 × 4
pixels regions was presented by [15]. Based on the output’s

probabilities, bounding boxes are fitted to detection clusters.

They report a recall of 91.4% with an intersection over union

of 0.25 for traffic lights larger than 8 pixels in width.

The drawback of deep neural networks currently is the
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amount of needed training data. Even though there exist

datasets for traffic light detection, we present a new dataset,

called the Bosch Small Traffic Lights Dataset as a contri-

bution of this work. The existing Lara [1] dataset for traffic

light detection only offers lower resolution images, while the

VIVA [14] benchmark’s labeling accuracy is insufficient.

We propose a system for detection, tracking, and 3D

localization of traffic lights for automated vehicles, which

utilizes deep learning. The detection of traffic lights is carried

out by an end-to-end trained neural network [11], which we

adapt to detect traffic lights as small as 3 × 10 pixels. The

tracker takes advantage of an autonomous vehicle’s onboard

sensing, as it uses stereo imagery to triangulate the traffic

lights’ positions in the 3D world and odometry information

to estimate the traffic lights relative movement with respect

to the vehicle. This location estimate is then corrected by a

neural network which is trained specifically for that purpose.

The paper is organized as follows. First, we introduce our

dataset in Section II-A and our complete system, starting

with the detector in Section II-B. We then give a description

of our classifier in Section II-C and tracker in Section II-D.

This description is followed by an evaluation and results in

Section III.

II. TRAFFIC LIGHT PERCEPTION SYSTEM

Our traffic light detection process consists of four steps as

shown in Fig. 2. The first is a bounding box detector which

finds traffic lights in images. After that, a classifier removes

false positives and predicts the lights’ states. Detected traffic

lights are then tracked over multiple frames and in the end

verified by the classifier once again. In the following, we

will go into each of those steps.

detect classify classifytrack

image image
disparity

tra c light positions

Fig. 2: The detector-tracker-classifier pipeline. The classifier

runs twice in order to filter out drifts of the tracker and

additional false positives.

A. Dataset

Machine learning approaches, especially deep learning

approaches, need data to train on. As part of this work,

we publish the Bosch Small Traffic Lights Dataset (http:
//k0b.de/bstld), an accurately labeled dataset for de-

tecting, classifying, and tracking traffic lights. Our dataset

contains RGB color images at the resolution of 1280× 720
pixels (see Fig. 7). For training, we collected more than 5000

images, mainly along El Camino Real in the San Francisco

Bay Area in California. An overview of the different bound-

ing box sizes is given in Table I, samples are displayed

in the Appendix. Overall, 10,756 traffic lights are labeled

within those images. The different traffic light sizes within

the training set vary between approximately 1 and 85 pixels

in width with the mean of 11.3 pixels.

minimum average median maximum
width 1.12 11.18 8.55 98.0
height 0.25 24.32 18.93 207.0
area 0.28 404.52 158.8 20286.0

TABLE I: Training set bounding box sizes in pixels.

The label distribution of the different traffic light states

is heavily skewed towards the three most common types

which are ”green”, ”red”, and ”yellow”. Also, because of the

difference between the sampling frequency of our camera and

the traffic light refresh rate, a lot of traffic lights frequently

appear to be off. Whenever this is the case, we opted for

labeling them as ”off” instead of their current state. The

complete distribution of labels within the training set is

shown in Table II.

Training in % Test in %
red 3057 28.42 5321 39.44
red straight 9 0.08 0 0
red straight left 1 0.01 0 0
red left 1092 10.15 0 0
red right 5 0.05 0 0
yellow 444 4.13 154 0.01
green 5207 48.41 7569 56.10
green straight 20 0.19 0 0
green straight left 1 0.01 0 0
green straight right 3 0.03 0 0
green left 178 1.65 0 0
green right 13 0.12 0 0
off 726 6.75 449 0.03

TABLE II: Label distribution over the training and test set.

For testing, we collected a stereo video sequence with

odometry along University Avenue in Palo Alto, California.

In contrast to the training images, those images are taken

and labeled consecutively at a frequency of 15.6 frames per

second. Since the bounding boxes are labeled consecutively,

it is possible to evaluate a tracker on them.

Overall, 8334 image files are labeled for the test set

which contain 13,493 traffic lights. Out of these, 2094

are labeled despite being occluded by a diverse range of

objects. Coincidently, our test-set only contains labels of the

types ”off”, ”green”, ”red”, and ”yellow”. Table III gives an

overview of the different sizes of traffic lights within our

test set. This dataset should be a challenging benchmark for

minimum average median maximum
width 1.875 9.430 8.500 48.375
height 3.250 26.745 24.500 104.500
area 11.718 313.349 212.109 4734.000

TABLE III: Test set traffic light bounding box sizes in pixels.

detecting traffic lights or more generally, small objects in

images. With this dataset, we provide our results as baseline.

B. Detection

Detecting objects in images is a challenging task, espe-

cially if it is to be done reliably, in real-time, and work

for both small and large objects. For traffic lights, real-time

detections with low false negative and false positive rates are

needed. A high false negative rate results in missed traffic

1371



Fig. 3: Sample image from our test-set. Our network is

evaluated at the positions within the image, shown in red,

teal, and yellow. Two green traffic lights are detected, one

by a cell of the yellow network, the other by red.

lights which is not acceptable for autonomous vehicles.

False positive detections can lead to the automated vehicle

behaving unpredictably e.g., stopping for non-existent red

traffic lights.

The ”You Only Look Once” (YOLO) [11] architecture

shows very good results on PASCAL VOC 2007 and 2012

while processing images at 45 frames per second. One

problem with a grid based approach to detection is the

limited number of suggested bounding boxes per cell. The

authors describe problems detecting small objects and flocks

of objects. Another problem is the trade-off between image

input sizes, speed, and memory usage. Since the average

width of the traffic lights in our datasets is only 10 pixels,

we have to adapt the network to detect small objects.

As the first step, instead of taking the complete image as

network input, we use the same network to evaluate different

patches of the image. During training, random crops of the

image are used as input to the network which increased

convergence speed and accuracy significantly. For the final

detection process, we used three crops in the upper part

of the image because most traffic lights are found in that

area. We found that by creating a heatmap of traffic light

occurrences. Each network has a receptive field of 448×448
pixels. The employed networks’ fields of view are visualized

for a sample image in Fig. 3.

To achieve a more fine grained detection, we also change

the number of grid cells from the suggested 7×7 to 11×11.

The granularity of the grid cell was chosen by increasing

the number of cells until the network stopped improving.

Especially distant traffic lights seemed to be affected by this

change.

Initial tests using the original YOLO architecture showed

lower performance in detection when the classification part

of the network was used. Therefore, since our object classes

only differ in the traffic lights’ states, we further modify

the network model to only detect objects. Removing the

classification part from the YOLO architecture yields the

following loss function:

λcoord

s2∑
i=0

B∑
j=0

1objij

(
(xi − x̂i)

2 + (yi − ŷi)
2
)

+ λcoord

s2∑
i=0

B∑
j=0

1objij

(
(
√
wi −

√
ŵi)

2 + (
√
hi −

√
ĥi)

2

)

+ λnoobj

s2∑
i=0

B∑
j=0

1noobjij (pi)
2
+

s2∑
i=0

B∑
j=0

1objij (pi − p̂i)
2

(1)

For a detailed explanation of all terms, please refer to [11].

However, pi and p̂i represent the network’s confidence and

the intersection over union of the object respectively, within

this work. Removing the classification from the detection

improved the model’s detection results significantly.

The network outputs 11 ·11 ·3 = 363 bounding boxes with

their corresponding confidences per image. Each bounding

box is represented by its location (x, y), width, height,

and the network’s estimate of the bounding box’s accuracy.

During training, the accuracy estimate is trained with p̂i
being the intersection over union with the detection and the

underlying object in the image. As in [11], this part of the

loss function is only used if an object overlaps with the

prediction. If there is no object overlap, p̂i is added to the

training cost as displayed in (1). After training, most false

positives can be removed by simply thresholding based on

the networks’ own confidence estimates.

The original classification capabilities of the architecture

is replaced by a small neural network which is described in

the next section.

C. Classification

The states of all detected traffic lights need to be deter-

mined. To do so, we create a small classification network

that differentiates between the different traffic light states and

additionally removes false positives. All bounding boxes are

expanded and rescaled so that the traffic lights are 20 px

wide and the whole crop is 64 × 64 px. This provides

approximately 22 pixels of context on the left and right. The

extra margin gives regional context which is necessary for

classification. Without the additional context, for example,

traffic light poles or parts of cars (in case of false positives)

would not be taken into account.

A dataset for training is created by randomly cropping

bounding boxes around the ground truth object with ad-

ditional image augmentation. The image augmentations in-

clude changes in brightness, noise, cropping, stretching, and

skewing. Overall we create 75000 crops for training and

4200 for validation. With the limited samples of labeled

data, we restrict our classifier training to the ”background”,

”green”, ”yellow”, ”red”, and ”off” classes. The ”off” class

is necessary for single frame classification since traffic lights

often appear as turned off for several frames at a time in our

camera images.

The classifier model is shown in Table IV. To ensure

classification speed, the model is kept fairly small and can be

1372



64

64

3+3

u
v
e

...

Fig. 4: Neural network for tracking. The neural network

receives a prototype image and a crop from a candidate

position. It then predicts the candidate’s offset (u, v) from

the tracked object and an error estimate e.

trained from scratch in only about an hour. Our final model

contains 6 weight layers, 3 of which are convolutional and

3 fully connected. All layers use rectified linear units [16]

as activation, except for the output layer with a softmax

function. In addition, we employ two max-pooling and three

dropout layers [17].

Input 3 × 64 × 64
Convolution filters: 32, kernel: (7,7), padding: 0, ReLU
Max-pooling kernel: (2,2)
Convolution filters: 64, kernel: (3,3), padding: 0, ReLU
Max-pooling kernel: (2,2)
Convolution filters: 128, kernel: (3,3), padding: 0, ReLU
Fully connected units: 256, ReLU
Dropout p: 0.5
Fully connected units: 128, ReLU
Dropout p: 0.5
Fully connected units: 5, softmax

TABLE IV: Small classifier model. The network is trained

within about an hour and achieves and accuracy of 99.24%

on our validation set.

D. Tracking

In order to fill in occasional gaps from the detector we

also employ an object tracker. Visual object trackers use

a similarity measurement metric on the prototype image

to determine its position in a neighborhood around the

position in the previous image frame. There are many metrics

based on pixel-wise similarity [18], histogram similarity [19],

HoGs, feature points, lines, neural network encoders [20],

and so on (we refer to [21], [22] for details). Apart from

these representations, SVMs, gradient descent, boosting, and

other methods are used. We employ a different approach

where we use an odometry-based motion model to estimate

the movement of the traffic lights and a neural network to

improve the tracked positions.

a) Initialization: The tracker is initialized with the

bounding boxes from the detector, which are provided asyn-

chronously w.r.t. the camera images. This is caused by the de-

tector’s processing time being longer than the time between

two consecutive video frames, which presents a challenge

for synchronization of the detector output and the tracker.

Therefore, processing of new detections is triggered by the

arrival of a new video frame. As the received detections are

a couple of frames in the past, tracking is re-run from their

frame of origin until the current frame and then they are

fused with the previously tracked bounding boxes from the

tracker.
For each new detection we find the closest previously

tracked bounding box by taking the mean distance of their

four corners. If the distance is smaller than a threshold,

which we chose to be 2w (double the width w of the

tracked bounding box), we update the tracked detection with

the new one by replacing its prototype, position, and size.

Otherwise we initialize a new object to be tracked. Because

the detector’s confidences can be misleading and with the

possibility of sudden spikes for false positives (described

in [23]), we keep decreasing the confidence of all tracked

detections that are not re-detected and raising confidence of

the ones that are.
b) Motion model: Our motion model takes advantage of

the fact that traffic lights are static objects in the environment.

Conveniently, since our system is installed on an autonomous

vehicle, which is equipped with stereo cameras and an

inertial measurement unit, we can use triangulation and

odometry information to create a motion model.
First, our stereo camera system computes a disparity map

for each video frame and each traffic light is triangulated into

the vehicle reference frame. The median of disparity values

in the bounding box is used to represent the entire traffic

light. This allows us to better deal with noise in the disparity

values. Then, we use linear triangulation [24] to reconstruct

the 3D coordinates of the 4 corners of the bounding box

X∗t−1 = [xc, yc, zc]T (c represents a corner id) in the previ-

ous vehicle reference frame t − 1 using the transformation

from the camera frame to the vehicle reference frame. Our

odometry system gives us the transformation T t
t−1 between

the vehicle reference frames for the time steps t − 1 and t.
We can then write

X̄c
t = T t

t−1X̄
c
t−1, (2)

x̄c
t = P X̄c

t , (3)

where P is the projection matrix from the vehicle reference

frame into the camera image frame, xc
t are the re-projected

image coordinates of the c corner, and ·̄ represents the

homogeneous coordinate notation. A bounding box estimate

in the time step t is constructed from the 4 re-projected

corners. This bounding box position is refined with a neural

network as described below.
c) Position refinement: Tracking traffic lights as small

as 3 − 4 pixels in width represents a challenging task.

Their dark pattern may not yield too many feature points,

especially if in front of unlit buildings or if there are trees

in the background. In addition to that, traffic lights flicker

with a frequency given by the difference between the camera

frame rate and the traffic light refresh rate. It is because the

Shannon sampling theorem does not hold for the camera and

traffic light sampling rates. Also the traffic lights’ states may

change during the time of tracking.
In order to deal with these conditions, we train a neural

network (model shown in Table V), inspired by the spatial
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Input 6× 64× 64
Convolution filters: 16, kernel: (3,3), padding: 0, ReLU
Max-pooling kernel: (2,2)
Convolution filters: 32, kernel: (3,3), padding: 0, ReLU
Max-pooling kernel: (2,2)
Convolution filters: 64, kernel: (3,3), padding: 0, ReLU
Max-pooling kernel: (2,2)
Convolution filters: 32, kernel: (3,3), padding: 0, ReLU
Fully connected units: 128, ReLU
Fully connected units: 64, linear
Fully connected units: 3, linear

TABLE V: The tracker position refinement network.

transformer network [25], which is capable of estimating the

misplacement of a traffic light from a prototype image. It

takes a prototype and a candidate bounding box estimated by

the motion model. They are expanded and rescaled so that

the traffic lights are of the reference width 20 px and the

whole crop is 64× 64 px. All three channels are taken from

both images and combined to a 6×64×64 tensor (see Fig. 4).

The output is a 3-element vector [u, v, e]T , where u and v are

the coordinates of the traffic light in the candidate image and

e is the estimated error of the coordinate estimate. The error

estimate e represents the uncertainty of the position estimate

and is used to trigger the update of the prototype image. We

train the network on random crops from our training set with

the loss function defined as

loss =
1

2N

N∑
i=1

di +
(
ei −

√
di

)2

, (4)

di = (ui − u′i)
2
+ (vi − v′i)

2
, (5)

where N is the batch size, [u′i, v
′
i]
T are the data position

labels, which we are learning.

d) Prototype updating: In order to increase the invari-

ance of the tracker to gradual changes of the prototype, we

employ prototype updating. We use the error estimate e from

the position refining neural network to trigger the update of

the prototype. Every time the error estimate e is below a

defined threshold, we crop a new prototype image from the

current image frame and replace the existing one with it.

The proposed method handles small traffic lights of

width ≥ 6 px very well and deals reasonably with traffic

lights 3−6 px in width. Additionally, the neural network may

be trained to overcome changes in illumination, noise, partial

occlusion, and also changing traffic light states. Traffic light

state transitions are a big challenge for other appearance-

based methods [22] as they change the appearance of the

tracked object entirely. Moreover, the fact that our motion

model is not dependent on visual features makes it robust to

state changes as well.

III. EVALUATION AND RESULTS

Our evaluation is performed on the labeled test-set de-

scribed in Section II-A. The training and test sets do not

overlap in location or even time of recording.

A. Detector

The current implementation of the detector runs at a

frequency of 10 fps. Because this is slower than our camera’s

frame rate, we perform two tests, an offline and an online

test. In order to see the maximum potential of the detector,

we test it offline which allows it to process each frame. Fig. 5

(top-left) shows the results of this test. It is apparent that the

detector is very good in localizing traffic lights which can be

seen by its overall high recall values. However, the difference

in precision and recall between the intersection over union

(IOU) threshold of 0.3 and 0.5 suggests that the detector

needs further improvement in bounding box size estimation.

Our system is capable of processing traffic lights in real-

time. Yet, since the current implementation of the detector

needs 100 ms to process each frame, some frames are

skipped and instead handled only by the tracker. Skipped

frames obviously lead to a drop in recall if the detector is

used online and on its own as shown in Fig. 5 (bottom-left).

B. Classifier

We trained a classifier to remove false positives and decide

between different traffic light states ”green”, ”yellow”, ”red”,

”off”, and ”background”. It takes about 0.06 ms to classify 32

samples with our model. With an accuracy of approximately

99% on the validation set we reach 95.1% on slightly trans-

lated ground truth data from the test-set. As the largest source

of error we identified traffic lights labeled as ”off”, which

are often falsely classified as ”background”. The difference in

accuracy can have multiple reasons, such as slight differences

in the types of traffic lights, background, or even lighting.

Training a better classifier can be accomplished with smarter

or more aggressive data augmentation and collecting more

training data.

C. Tracker

The tracker is tested separately on ground truth bounding

boxes in order to evaluate its tracking ability without any

influence from the detector. We examine the influence of the

initial bounding box width on tracking ability. In a single

test we fix the minimum bounding box width w px and a

track of length l frames. Bounding boxes smaller than w are

filtered out and not used during this test. Ground truth tracks

shorter than l are discarded and tracks longer than l are split

into tracks of length l. We then test how long the tracker is

able to track each track.

Fig. 6 (left) shows the results of the test. As can be seen,

our tracker performs well starting with w ≥ 6 px and is also

able to track smaller traffic lights for small l (1 ≤ l ≤ 20).

It is observed that all visible traffic lights are successfully

tracked for w ≥ 15 px up to track length l = 80. The dataset

also includes partially occluded traffic lights, which can be

challenging to track.

The influence of running the classifier before and after the

tracker is shown in Fig. 6 (right). We would like to point out

the ability of the classifier to filter out a half of the false

positive detections without a significant drop in recall for

track lengths l < 30.
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Fig. 5: Precision-recall curves of the system. Solid lines represent an evaluation with intersection over union (IOU) ≥ 0.5,

dashed lines an IOU ≥ 0.3. The top row shows an offline run, where each frame is processed by the complete system. The

bottom row shows an online run at 15 fps, which causes the detector to skip frames such that the tracker has to fill in for

it. The improvement of using the tracker (right) compared to no tracker (left) is clearly visible.
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Fig. 6: Tracker evaluation: Testing tracking ability based on initializing bounding box width w and track length. The plots

show recall and the false positives per frame (FPPF) of the tracker alone (left) and the tracker together with the classifier

(right). Tracks of lengths > 140 frames are not included because they contain, for the most part, static scenes.
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D. Detector, tracker, and classifier pipeline

In order to provide an insight on how the whole pipeline

improves the results, when compared to the detector alone,

we ran an offline and an online test.

a) Offline evaluation: The detections from the offline

detector run were used to initialize the tracker. Also, the

classifier was run before and after the tracker (as shown in

Fig. 2). It is apparent from Fig. 5 (top-right) that the classifier

and tracker bring improvements in both precision and recall

of the whole system (compared to Fig. 5 (top-left)). As

one can notice, the curves are missing the low-recall parts.

Since we are plotting precision-recall curves by varying the

confidence threshold of the detections, here, we are missing

detections with low confidence values. This is caused by our

confidence updating mechanism described in Section II-D,

which increases the confidence of all bounding boxes that

are being re-detected. Therefore, most correct detections will

have the maximal confidence value.

b) Online evaluation: Since our system is to be used

in autonomous cars, we ran an online test at 15 fps (the

frame rate of our camera) to show the real-time capabilities

of the whole pipeline. The test was carried out on a computer

equipped with an Nvidia GeForce GTX Titan Black and its

results are displayed in Fig. 5 (bottom-right). In order to

avoid unnecessary overhead, the detections from the detector

were filtered by the confidence threshold 0.1. This slightly

lowers our recall for this test.

We see that the tracker, combined with the classifier, can

substitute the detector on the missed frames extremely well

and can push the system to a comparable performance to the

offline run (Fig. 5 (top-right)).

Overall, the detection quality of our approach is very

high, especially for small traffic lights. For a better vi-

sual representation see Fig. 8 or we uploaded a video to

http://k0b.de/tld_icra. It first shows results of our

complete pipeline and then the tracker based on ground truth

data, which is being published every few seconds.

IV. CONCLUSIONS

We proposed an approach to detect traffic lights in images

at a resolution of 1280 × 720 pixels using deep learning.

First, we created a highly accurate dataset which we are

publishing as part of this work under Bosch Traffic Light
Evaluation Dataset. We trained a neural network for traffic

light detection which for equal error rates detects traffic

lights down to the size of 4 × 12 pixels at the IOU of 0.5.

Then, a second neural network determines false positive

detections and the traffic lights’ states. Finally, we describe

a stereo vision, odometry, and deep learning based approach

to tracking of traffic lights that supplements the detector

in case of misses or time constraints. The proposed system

runs in real-time and achieves high accuracy in challenging

conditions.

As with most machine learning systems, a straightforward

approach for improving the accuracy of the system, is to

collect and label more training data. Especially, images from

other regions would improve the generalization capabilities

of our system. Additionally, parallelizing computations in

the detector and tracker would allow us to meet even higher

real-time requirements.

We believe that our traffic light detection pipeline can

lead to smoother trajectories of automated vehicles in urban

environments and allow for more accurate mapping systems.
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